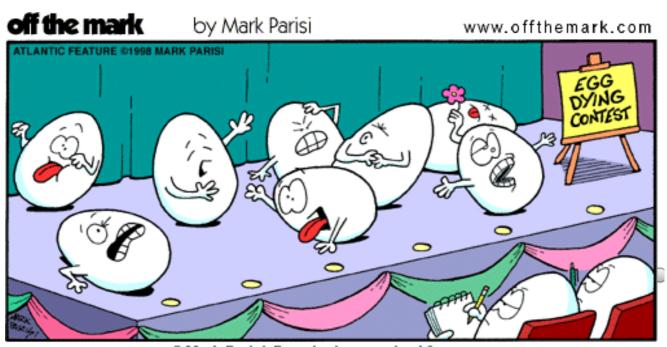
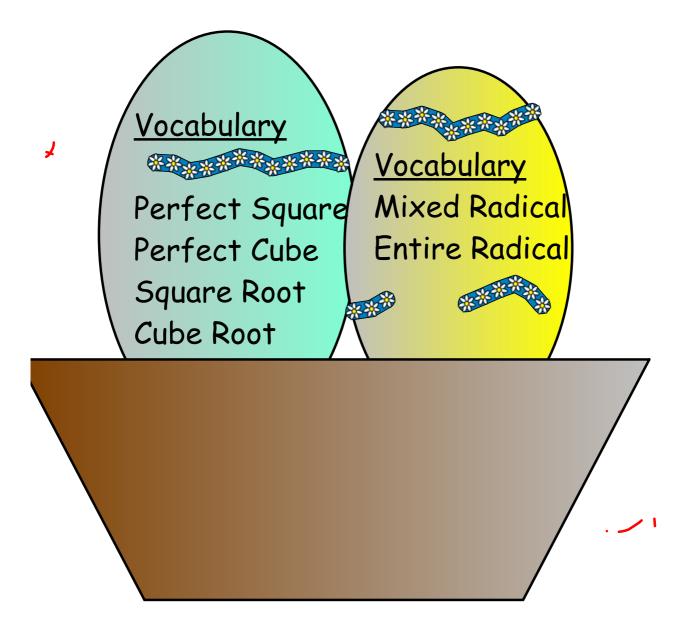
2 Tb 3/16 Lesson - Mixed and Entire Radicals INDEX 2 -



© Mark Parisi, Permission required for use.



Numb	er		Perfect Cube	Perfect Cube (-) $-x^3$
χ				-x
1	1	1	-1	
2	4	8	-8	
3	9	27	-27	
4	16	64	-64	
5	25	125	-125	
6	36	216	-216	
7	49	343	-343	
8	64	512	-512	
-3 -5	925			

$$\frac{2\sqrt{4}}{6\sqrt{5}} = \sqrt{3}$$

$$\frac{3}{2} = \sqrt{2}$$

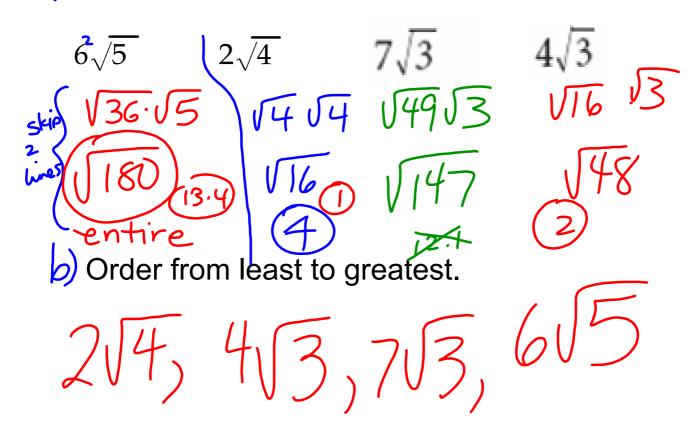
$$\frac{3\sqrt{32}}{\sqrt{32}}$$

$$\frac{3\sqrt{32$$

Arrange from least to greatest:

$$\sqrt{17} \sim 4.7$$
 $\sqrt{9} = 3$
 $\sqrt{12} \sim 3.5$
 $\sqrt{3} \sim 1.7$

a) Write as an ENTIRE RADICAL.



Arrange from least to GREATEST.

$$6\sqrt{5}$$

$$2\sqrt{4}$$

$$7\sqrt{3}$$

$$4\sqrt{3}$$

4.3 Mixed and Entire Radicals

LESSON FOCUS

Express an entire radical as a mixed radical, and vice versa.

Make Connections

We can name the fraction $\frac{3}{12}$ in many different ways:

$$\frac{1}{4}$$
 $\frac{5}{20}$ $\frac{30}{120}$ $\frac{100}{400}$

How do you show that each fraction is equivalent to $\frac{3}{12}$?

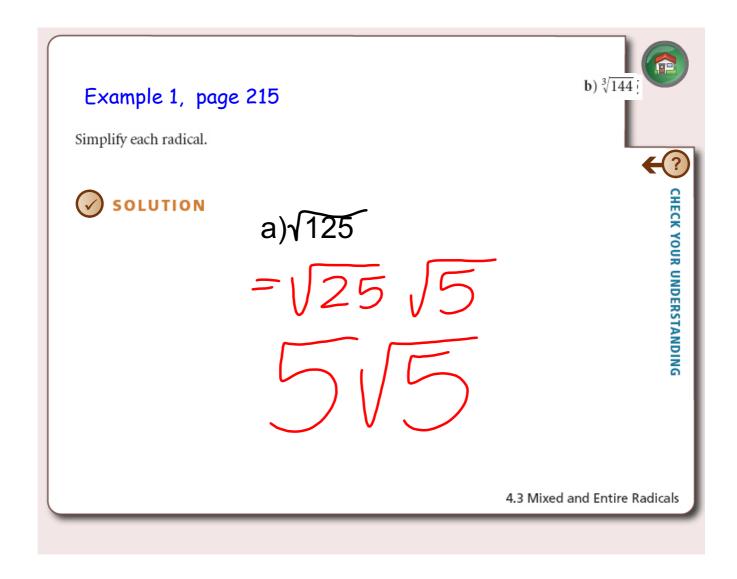
Why is $\frac{1}{4}$ the simplest form of $\frac{3}{12}$?

453 mixed radical 1653 1653 entire 453

Copy

STEPS for writing a Mixed Radical

- 1. Find BIGGEST Perfect Square that is a factor of the radicand. (see link for def'n) radicand
- 2. (√Perfect Square) (other factor)
- 3. (Simplify 1st bracket) (other factor)



Try This one

Some numbers, such as 200, have more than one perfect square factor.
The factors of 200 are: 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200
Since 4, 25, and 100 are perfect squares, we can simplify $\sqrt{200}$ in these ways.
?
?
?
4.3 Mixed and Entire Radicals

V4 V3 2V3

a)
$$\sqrt{30}$$

b)
$$\sqrt{64}$$

$$_{\rm c)}\,3\sqrt{4}$$

c)
$$3\sqrt{4}$$
 d) $2\sqrt{28}$

End of lesson

Please do the worksheet -both sides

VOCABULARY-Recap

Mixed Radical Entire Radical

Radicals of the form $\sqrt[n]{x}$ such as $\sqrt{80}$, $\sqrt[3]{144}$, and $\sqrt[4]{162}$ are entire radicals.

Radicals of the form $a\sqrt[n]{x}$ such as $4\sqrt{5}$, $2\sqrt[3]{18}$, and $3\sqrt[4]{2}$ are **mixed radicals**. Entire radicals were rewritten as mixed radicals in *Examples 1* and 2.

DX - Entire Radical DVX - Mixed Radial Coefficient >1. Arrange from least to greatest:

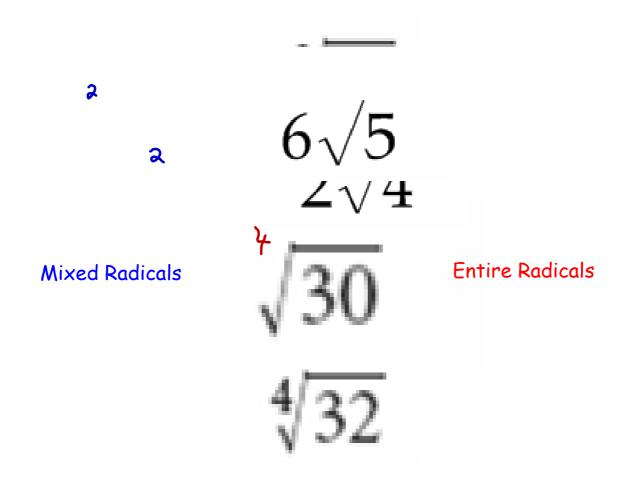
$$7\sqrt{2}$$
, $\sqrt{100}$, $5\sqrt{3}$, $4\sqrt{6}$

Check Worksheet

Lesson - Mixed and Entire Radicals with Index higher than 2

In Class Assignment -Early Check IN

Lesson - PART 2 - Mixed and Entire Radicals



Perfect Cubes

Perfect Fourths Perfect Fifths

For example, the factors of 24 are: 1, 2, 3, 4, 6, 8, 12, and 24.

■ We can simplify $\sqrt{24}$ because 24 has a perfect square factor of 4. Rewrite 24 as the product of two factors, one of which is 4.

■ Similarly, we can simplify $\sqrt[3]{24}$ because 24 has a perfect cube factor of 8. Rewrite 24 as the product of two factors, one of which is 8.

7

■ However, we cannot simplify $\sqrt[4]{24}$ because 24 has no factors (other than 1) that can be written as a fourth power.

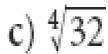
How can we edit these steps for other roots? (i.e. $\sqrt[3]{}$ and $\sqrt[4]{}$)

STEPS for writing a Mixed Radical

- 1. Find BIGGEST Perfect Square that is a factor of the radicand. (see link for defn)
- 2. ($\sqrt{\text{Perfect Square}}$) (other factor)
- 3. (Simplify 1st bracket)(other factor)

Write each radical in simplest form, if possible.

 $\frac{\xi_{x}2}{a}$ a) $\sqrt[3]{40}$



SOLUTION

Write each radical in simplest form:

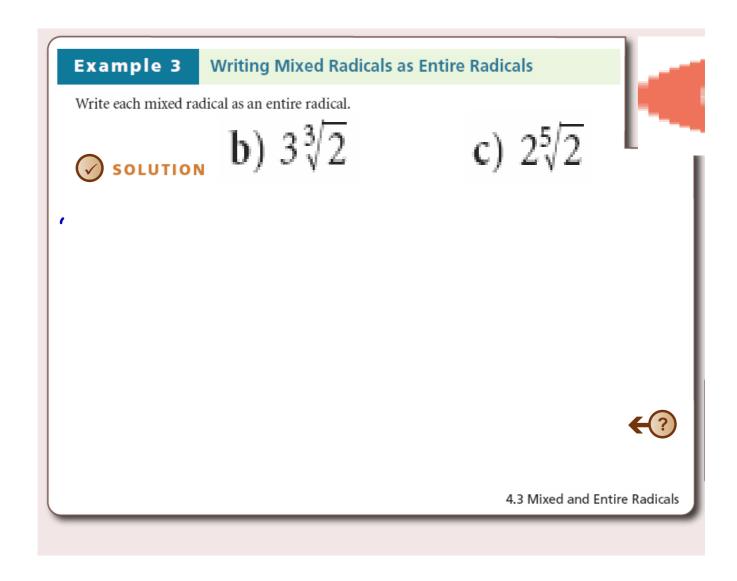
$$\sqrt[3]{81}$$

$$\sqrt[3]{128}$$

$$\sqrt[4]{512}$$

CHECK YOUR UNDERSTANDING

- 2. Write each radical in simplest form, if possible.
- a) $\sqrt{30}$ b) $\sqrt[3]{32}$ c) $\sqrt[4]{48}$



CHECK YOUR UNDERSTANDING

- 3. Write each mixed radical as an entire radical.
 - a) $7\sqrt{3}$ b) $2\sqrt[3]{4}$

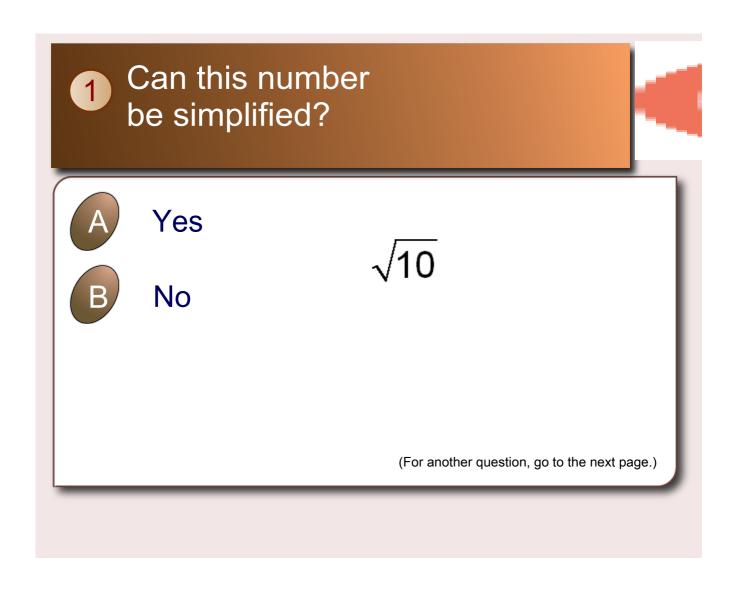
c) 2⁵√3

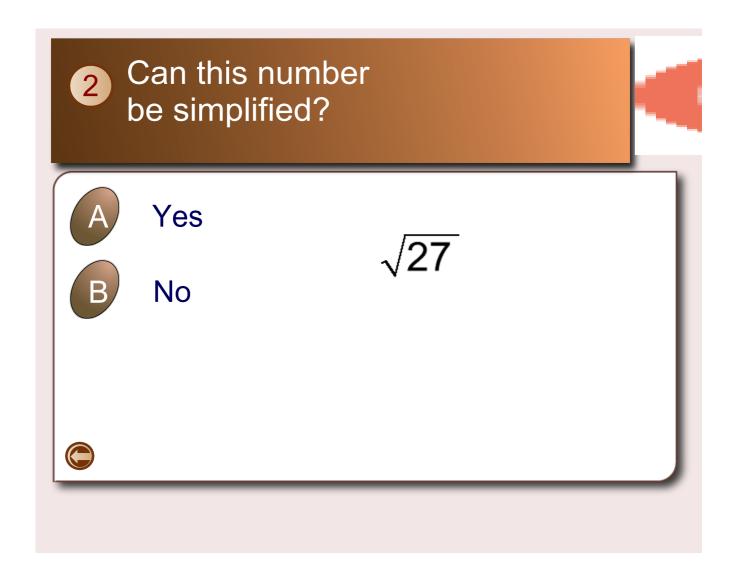
End of lesson

Textbook -Page 218-219 11acegi,12acegi,17,18, 21, 22

Extra Practice (optional) -page 221

Give out assignments





Simplifying Radicals Using Prime Factorization

Simplify each radical.

a)
$$\sqrt{80}$$

b)
$$\sqrt[3]{144}$$

c)
$$\sqrt[4]{162}$$

SOLUTION

Write each radical as a product of prime factors, then simplify.

a)
$$\sqrt{80} = \sqrt{8 \cdot 10}$$

$$= \sqrt{2 \cdot 2 \cdot 2 \cdot 5 \cdot 2}$$

5

$$= \sqrt{(2 \cdot 2) \cdot (2 \cdot 2) \cdot 5}$$

$$= \sqrt{2 \cdot 2} \cdot \sqrt{2 \cdot 2} \cdot \sqrt{5}$$

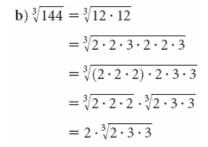
$$= 2 \cdot 2 \cdot \sqrt{5}$$

$$=4\sqrt{5}$$

Since $\sqrt{80}$ is a square root, look for factors that appear twice.

(Solution continues.)

Simplifying Radicals Using Prime Factorization



Since ³√144 is a cube root, look for factors that appear 3 times.

 $=2\sqrt[3]{18}$ c) $\sqrt[4]{162} = \sqrt[4]{81 \cdot 2}$

> $=\sqrt[4]{3\cdot 3\cdot 3\cdot 3\cdot 2}$ $=\sqrt[4]{(3\cdot 3\cdot 3\cdot 3)\cdot 2}$

 $=\sqrt[4]{3\cdot 3\cdot 3\cdot 3\cdot 4}\sqrt{2}$

 $=3\sqrt[4]{2}$

Since $\sqrt[4]{162}$ is a fourth root, look for factors that appear 4 times.

Writing Radicals in Simplest Form

Write each radical in simplest form, if possible.

a)
$$\sqrt[3]{40}$$

b)
$$\sqrt{26}$$

SOLUTION

Look for perfect nth factors, where n is the index of the radical.

a) The factors of 40 are: 1, 2, 4, 5, 8, 10, 20, 40 The greatest perfect cube is $8 = 2 \cdot 2 \cdot 2$, so write 40 as $8 \cdot 5$.

$$\sqrt[3]{40} = \sqrt[3]{8 \cdot 5}$$

$$= \sqrt[3]{8} \cdot \sqrt[3]{5}$$

$$= 2 \cdot \sqrt[3]{5}$$

$$= 2\sqrt[3]{5}$$

b) The factors of 26 are: 1, 2, 13, 26 There are no perfect square factors other than 1. So, $\sqrt{26}$ cannot be simplified.

(Solution continues.)

Writing Radicals in Simplest Form

c) The factors of 32 are: 1, 2, 4, 8, 16, 32 The greatest perfect fourth power is $16 = 2 \cdot 2 \cdot 2 \cdot 2$, so write 32 as 16 · 2.

$$\sqrt[4]{32} = \sqrt[4]{16 \cdot 2}$$
$$= \sqrt[4]{16} \cdot \sqrt[4]{2}$$
$$= 2 \cdot \sqrt[4]{2}$$

 $=2\sqrt[4]{2}$

CHECK YOUR UNDERSTANDING

Example 3 Writing Mixed Radicals as Entire Radicals

Write each mixed radical as an entire radical.

- a) $4\sqrt{3}$ b) $3\sqrt[3]{2}$ c) $2\sqrt[5]{2}$

SOLUTION

a) Write 4 as: $\sqrt{4 \cdot 4} = \sqrt{16}$

$$\sqrt{4\cdot 4} = \sqrt{16}$$

$$4\sqrt{3} = \sqrt{16} \cdot \sqrt{3}$$

 $4\sqrt{3}=\sqrt{16}\cdot\sqrt{3}$ Use the Multiplication Property of Radicals.

$$=\sqrt{16\cdot 3}$$

$$=\sqrt{48}$$

b) Write 3 as:
$$\sqrt[3]{3 \cdot 3 \cdot 3} = \sqrt[3]{27}$$

$$3\sqrt[3]{2} = \sqrt[3]{27} \cdot \sqrt[3]{2}$$

$$=\sqrt[3]{27\cdot 2}$$

$$=\sqrt[3]{54}$$

(Solution continues.)

Writing Mixed Radicals as Entire Radicals

c) Write 2 as:

$$\sqrt[5]{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} = \sqrt[5]{32}$$

$$2\sqrt[5]{2} = \sqrt[5]{32} \cdot \sqrt[5]{2}$$

$$= \sqrt[5]{32 \cdot 2}$$

CHECK YOUR UNDERSTANDING

CHECK YOUR UNDERSTANDING

- 1. Simplify each radical.
 - a) √63
 - **b**) $\sqrt[3]{108}$
 - c) ⁴√128

