Page 350 Question #13

HJKM is a quadrilateral.

Nov 19-8:59 AM

Page 350 Question #13

HJKM is a quadrilateral.

a) Is HJKM a parallelogram? Justify your
 answer. Yes, because opposite sides of the quadrilateral are parallel lines based on the slopes we calculated

Page 350 Question #13

HJKM is a quadrilateral.

a) Is HJKM a parallelogram? Justify your

Yes, because opposite sides of the quadrilateral are parallel based on the slopes we calculated

b) Is HJKM a rectangle? Justify your answer.

$$MKJ = \frac{1}{3} M_{Mk} = \frac{7}{3}$$

No, because the lines don't cross at 90 degree angles

NOT Negative Reciprocals

Page 350 Question #16

The coordinates of the vertices of $\triangle ABC$ are A(-3,1), B(6,-2), and C(3,4). How can you tell that $\triangle ABC$ is a right triangle?

Plot points, Find Slopes

Page 350 Question #17

The coordinates of the vertices of $\triangle DEF$ are D(-3,-2), E(1,4), and F(4,2). Is $\triangle DEF$ a right triangle? Justify your answer.

Plot points, Find Slopes $M_{DF} = \frac{6}{4} = \frac{3}{6}$ $M_{DF} = \frac{3}{4}$ $M_{DF} = -\frac{4}{4}$

Page 350 Question #16

The coordinates of the vertices of $\triangle ABC$ are A(-3,1),B(6,-2), and C(3,4). How can you tell that $\triangle ABC$ is a right triangle?

Plot points, Find Slopes

Right Angle = 90 degrees
Which means the lines would be perpendicular.
So are any of the slopes negative reciprocals of each other?

No Negative Reciprocals

No lines are perpendicular to each other so no right angles. Therefore, not a right angle triangle.

Page 350 Question #17

The coordinates of the vertices of $\triangle DEF$ are D(-3,-2), E(1,4), and F(4,2). Is $\triangle DEF$ a right triangle? Justify your answer.

 $M_{DE} = \frac{6}{4} = \frac{3}{3}$

$$M_{DF} = \frac{4}{7}$$

Right Angle = 90 degrees

Which means the lines would be

Which means the lines would be perpendicular. So are any of the slopes negative reciprocals of each other?

$$M_{EF} = -\frac{3}{3}$$
 $M_{DE} = \frac{3}{3}$ $\frac{M_1 \times M_2}{3} = \frac{-6}{6} = -\frac{6}{3}$

Yes lines EF and DE are perpendicular to each other so there is a right angle. Therefore, a right angle triangle.